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Value of Dimensional Reduction

@ Dimensionality reduction reduces data to its dimensions of highest

@ It can allow datasets with thousands of variables
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Singular Value Decomposition

@ Factorization of matrix into three components

o Generalizes diagonalization to non-square and singular matrices
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SVD Visualized
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Figure 1: SVD Visualized
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SVD Example
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e Start by finding eigenvalues of AAT
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SVD Example: Characteristic Equation

AAT — X =0 (3)
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SVD Example: Characteristic Equation

AAT — X =0 (3)

A — 34\ 4225 =0 (4)
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SVD Example: Characteristic Equation

AAT — Xl =0 (3)
A2 — 34X\ +225 =0 (4)
(A=25)(A—9)=0 (5)

0012@,02:\/5

@ 3, 5, and 0 are our singular values o;
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Finding V

@ Find unit-length vector in kernel of matrix AT A — a,-zl

-12 12 2
ATA—25/=|12 -12 -2 (6)
2 -2 17

@ This row reduces to:
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Finding V

@ Find unit-length vector in kernel of matrix AT A — a,-zl

—-12 12 2
ATA—25/=|12 -12 -2 (6)
2 -2 17
@ This row reduces to:
1 -1 0
0 0 1 (7)
0 0 O

@ The unit-length vector in the kernel is:
1
P
Vi = V2 (8)
0
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Finding V

o Find unit-length vector in kernel of matrix AT A — a,.zl

4 12 2
ATA—9l= |12 4 -2 (9)
2 -2 -1
@ This row reduces to:
10 —?1
01 2 (10)
00 O
@ The unit-length vector in the kernel is:
1
Vo = \/7178 (]_1)
4
V18
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Finding V

e Final vector can be found by computing the kernel of AT A or by
finding a unit-length vector perpendicular to v; and with transpose
perpendicular to V5

(12)

V3 =

P
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Finding U

11 0
50 0] |2 V2
A:UZVT:U[O 3 0]* % \T} {%18 (13)
3 3 2
@ ou; = Av; or u; %Av;
A 1 1 5 0 0 1 1
A=UzVT = |2 ?]*[o 3 0]*[? v 0] (14)
V2 V2 V18
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Principal Component Analysis Overview

@ PCA is the most commonly used dimensionality reduction technique

@ PCA is used to reduce the data to a combination of variables
representing maximum variance
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PCA Steps

@ Standardize Data

© Compute Covariance Matrix
© SVD or eigendecomposition
@ Select top Eigenvectors
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Standardize Data

OriginalData — colMean

CenteredData = —
ColstandardDeviation
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Compute Covariance Matrix

- - X)) DXy -T)

m — -h;- -I;"‘
Cov(4) S, ~-XNy,-T) D0, -y -1)
N N

[Cov(X.X) Cov(Y.X)
| Cov(X.Y) Cov(¥.,h)
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Select top Eigenvectors of covariance matrix

Perform Eigenvector decomposition

Order eigenvectors by eigenvalues

Highest eigenvalues correspond to eigenvectors of “principal
components” explaining most variance

If not a square matrix, do SVD
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PCA Example

PCA | n a nuts h e| | 3. compute covariance matrix

h u
1. correlated hi-d data 2. center the points h(20 (0.8}~ covha)= S hu
* u . \  ulos o6)
* o )
— * ¢ 4. eigenvectors + eigenvalues
T
S s ° 20 08 e
2 P SO 08 06 e, Al e
S ® e ¥ \
5 e 20 08 )\‘r
13 Su 08 061 "1
want dimension of

* hight eig(cov(data))
height [inches] ighest variance

5. pick m<d eigenvectors
w. highest eigenvalues

7. uncorrelated low-d data 6. project data points to e
those eigenvectors *
[} v ] Ao
i—E—E—r anE = i .
a \
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PCA Regression

@ PCA regression often used to avoid multicolinearity problem in
regression

@ PCA is also useful in situations with high-dimensional covariates

@ If using to forecast, make sure to reconvert to standard coordinates
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PCA Visualization
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@ PCA is unsupervised while LDA is supervised

@ PCA attempts to find principal components that maximize variation
while LDA finds variables that maximize separability between groups

@ LDA common in topic modelling
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LDA Visualized

tSNE Representation of Guided-L DA Topics Colored and Sized by Topic Probability
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Figure 2: LDA Visualization
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Bias-variance Tradeoff

MSE = bias® + variance + baselineError? (16)

Total Error

Variance

Optimum Model Complexity

Error

Model Complexity

Figure 3: Bias-Variance Tradeoff
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Bullseye Picture
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Figure 4: Precision vs. Accuracy
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Overfitting vs. Underfitting

H\gn variance H\gn bias Low bias, low variance
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Figure 5: Overfitting vs. Underfitting
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Splitting Data

o Data can be split into two or three datasets: training, testing, and
cross-validation
@ Data are split to make sure models fit out-of-sample data correctly

@ Cross-validation dataset is used for parameter
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Cross-validation

@ How did you tune k?
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Cross-validation

@ How did you tune k?

@ Cross-validation!
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Cross-validation

How did you tune k?

Cross-validation!

Cross-validation allows you to choose model parameters by testing the
model on data other than the test set with a range of different
parameters

@ Can use separate dataset or split training set
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K-Fold Cross-validation

Divide the dataset into k folds
Train with parameter on k-1 data
Test for parameter on last data
Repeat and take average error
Use parameter with minimal error

Training Sets Test Set
1 1
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Figure 6: K-fold Cross validation
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Leave-one-out Cross-validation

@ Leave one out is a special form of K-fold cross validation in which one
observation is used as the cross-validation set over all observations,
and the average error is cross-validation error

e LOOCV is computationally expensive but good with few observations

[KeJole'H | eave One Out Cross Validation

Total Data

Figure 7: Leave-one-out Cross-validation
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Stratified K-Fold CV

@ Used most commonly for classification tasks

@ Attempts to use stratified random sampling to match the proportions
of observations in the training data

@ Used to prevent bad batches of folds from messing up training error

StratifiedKFold

CV iteration

class —

group L L I ——
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sample index

Figure 8: Stratified K-fold Cross-validation
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Thank You So Much! )

Eco 322 Golden,Maliar 27 /27



Conclusion

List of References

Eco 322 Golden,Maliar 27 /27



	Introduction and Background
	Dimmensionality Reduction
	Overfitting and Underfitting
	Conclusion

