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Introduction and Background
©00

Why linear algebra is important?

@ Linear algebra is at the heart of machine learning

@ Many advanced linear algebra techniques are important to machine
learning algorithms

@ Matrices are how computers make sense of data
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Introduction and Background
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Why optimization is important?

@ Most machine learning frameworks focus on optimization

@ As economists, we often want to view algorithms through the lens of
optimization

Data Science and Machine Learning Golden, Maliar 2/30



Introduction and Background
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Why re-introduce linear regression?

@ Machine learning view on linear regression focuses on optimization

@ Linear regression is a common framework in econometrics and
provides a lens through which to see machine learning

@ Most undergrad econometric classes don't focus on matrix algebra
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Review of Linear Algebra
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Matrix Multiplication

al az a3 bl b2 b3 cl C2 c3
a, a, a, b4 b5 b6 = C, C, C,
a7 a8 a9 b7 b8 b9 C7 CS C9

Data Science and Machine Learning Golden, Maliar 4/30



Review of Linear Algebra
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Linear Independence

o A set of vectors {v;}7_; is linearly independent if the vector equation
X1V1...XnVn = 0 has only the trivial solution x=0

a
A}
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Review of Linear Algebra
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Linear Independence Example

@ Are the following vectors linearly independent?

2 —4 1
2 6 0 (1)
1 5 0
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Review of Linear Algebra
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Linear Independence Example

@ Are the following vectors linearly independent?

2 —4 1
2 6 0 (1)
1 5 0
2 15 3
5 7 9 (2)
4 30 6
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Review of Linear Algebra
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@ A matrix’s rank is the number of linearly independent rows

@ The rank of a matrix can be found by row-reducing and finding
number of pivot points

@ Only matrices of full rank are invertible. Why is this important?

1 2 1 2Ry +Ra— Ry 1 21 IR+ Ry — 0y 1 2 1
-2 -3 1|———= |0 1 3 01 3
3 a 0 3 58 0 0o -1 -3

fig 4 My —e ity 121 2Ry + 0y — Ry 10 5

——— |0 1 3 01 3

0 0 0 00 0
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Review of Linear Algebra
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Inverse Definition

@ A square matrix's inverse is the matrix that when multiplied by the
matrix is the identity

@ While most matrix multiplication is not communitive, inverse
multiplication is

@ Singular matrices have no inverse
AATL = ATTA= (3)
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Review of Linear Algebra
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Finding an Inverse

@ Method 1: Augment matrix with identity matrix, and row reduce
original matrix while applying steps to augmented matrix

@ Method 2: Multiple inverse of absolute value of determinant by
adjoint matrix

@z A @y @ iz @3

a3z a3z | @33 asz| g oaxs

@y az) SER

@33 a3

@ a3

@3l @33 @ apl

@2 ax @z ap a2

@31 @32 @3z A3 a1 a2z
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Review of Linear Algebra
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Usefulness of Inverses

@ Matrix inverses can be used to solve systems of equations

@ Crucial for econometrics and specific machine learning tasks
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Review of Linear Algebra
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Determinants

@ Determinants have four properties:
o The determinant of the identity matrix is 1
e Exchange of two rows multiplies determinant by -1
o Multiplying a row by a number multiplies the determinant by this
number
e Adding to a row a multiple of another row does not change the
determinant
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Review of Linear Algebra
00000000e000

Eigenvalues and Eigenvectors

@ Eigenvectors are vectors that when multiplied by a matrix produce
themselves times a constant
@ The constant is the eigenvalue
o Eigendecomposition is incredibly useful for PCA
AVv=v (4)
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Review of Linear Algebra
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Projection
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Review of Linear Algebra
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@ a vector is said to be in space V if for scalar ¢, ca€ V and for 3¢ V
and be V,3+becV

cw

dimr
column space
all Ax

e

et nullspace
Aty=0
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Review of Linear Algebra
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@ Norms have three properties
o Subadditivity: p(x +y) < p(x) + p(y)vVx,y € X
e Absolute homogeneity: p(sx) = |s|p(x)
o Positive definiteness: p(x) =0< x =0
@ Why are these useful? What might a function that is a norm look
like?
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Review of Linear Algebra
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Norms have three properties

o Subadditivity: p(x +y) < p(x) + p(y)vVx,y € X

e Absolute homogeneity: p(sx) = |s|p(x)

o Positive definiteness: p(x) =0< x =0
@ Why are these useful? What might a function that is a norm look
like?

Euclidean Norm: ||x|[2 = {/xZ + ... + x2

°
e Taxicab Norm: ||x|]1 = Y1 |xi
@ P-norm ||x||, = (Ly/xi®)

Data Science and Machine Learning Golden, Maliar 15/30



Optimization
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Analytic Optimization

@ Analytic optimization is the most well known to economists
@ It involves finding the maximum of a convex function

@ Analytic optimization can only be done for functions with analytic
maximums
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Gradient Descent

Understanding Gradient Descent

A

Initial

0 Gradient
Weight '
;
»
Incremental

Step
f 4

Weight

f(x)=x*>—4x+3
X = X - learning_rate * grad
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Optimization
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Stochastic Gradient Descent

@ Take gradient for random observation / and take step in that direction
0 =60 —aVifi(9) (5)

Stochastic Gradient
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Optimization
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Newton’s Method

f'(60)

0 =06- f//((g) (6)
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Linear Regression
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Deriving Least Squares with Matrix

y=B8X+u (7)
mﬁin Zthl[Yt u z?:lﬂlxti]2 (8)
min =iy — X0 (9)
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Linear Regression
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Deriving Least Squares with Matrix

y=B8X+u (7)
mﬁin Zthl[Yt u z?:lﬂlxti]2 (8)
min =iy — X0 (9)

o Take the matrix derivative
X'y = XB)=0 (10)
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Linear Regression
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Deriving Least Squares with Matrix

y=BX+u (7)
mﬁin Zthl[Yt = z?:lﬂlxti]2 (8)
min Ly — X8 (9)
@ Take the matrix derivative
X'(y = XB)=0 (10)
X'y —X'XB=0 (11)
X'y =X'X3=0 (12)
B=(X'X)""(Xy) (13)
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Linear Regression
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Least Squares Asymptotics

E(B) = (X'X) (X'y) = (14)
(X'X) " H(X(XB + u)) = (15)
(X'X) X' XB + (X' X)X u = (16)
B+ (X'X) X'y (17)

o (X'X)"X'u asymptotically goes to zero. Why?
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Linear Regression
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Least Squares Standard Error
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Least Squares Standard Error
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Least Squares Standard Error
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Linear Regression
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Least Squares Standard Error

E((X'X) " X ud/ X(X' X)) = (21)

(X' X)X E(ud)X(X'X) ™ = (22)
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Linear Regression
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Least Squares Standard Error

E((X'X) " X ud/ X(X' X)) = (21)
(X' X)X E(ud)X(X'X) ™ = (22)

(X'X) ' XX (X' X) (23)




Linear Regression
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Least Squares Standard Error

E(X'X) 7 X uu' X(X'X) 1) =
(X' X)X E(ud)X(X'X) ™ =
(X'X) ' XX (X' X)

AX X)X XX X) P =a2(X'X) !
VarfB; = oa?(X'X);

(24)
(25)



Linear Regression
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Assumptions and Violations of Least Squares
Asymptotics

@ What happens if the x-values are correlated with the error term?
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Assumptions and Violations of Least Squares
Asymptotics

@ What happens if the x-values are correlated with the error term?
E(B) = (X'X) ' X'XB+ (X'X) ' X'u= (26)

B+ (X'X) " X'u+p (27)
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Linear Regression
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Assumptions and Violations of Least Squares
Asymptotics

@ What happens if the x-values are correlated with the error term?
E(B) = (X'X) ' X'XB+ (X'X) ' X'u= (26)

B+ (X'X) " X'u+p (27)

@ What happens if the y values are correlated with the error term?
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Linear Regression
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Derivation of Maximum Likelihood Estimator of
Least Squares

Ye = XeB + ug, up ~ iidN(0, o?) (28)

L(y|8,0) = W exp{f(y X:8)*} (29)

In(L(y18.0) = 3 - n(2m) — In(o) ~ 5 (e = X6 (30)
t=1

@ This is maximized by minimizing the sum of squared errors
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Linear Regression
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Algorithm for Solving Least Squares using
Maximum Likelihood

@ Start with cost function
@ Minimize

@ How to find standard error?
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Linear Regression
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Algorithm for Solving Least Squares using
Maximum Likelihood

Start with cost function

Minimize

How to find standard error?
Hessian matrix/ Information matrix
Monte Carlo
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Linear Regression
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Cost Functions

A function you attempt to minimize within the machine learning
context

A way to measure how well your algorithm is performed

Example: MSE, log loss

Generally make log loss negative. Why?
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Linear Regression
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e L1 Norm
@ Used to choose variables and prevent overfitting

@ Sets value of some coefficients to zero
. 2
mingy s, {1 (vi — Bo — X' ) }S-t'zlewj‘ <t (31)
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Linear Regression
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@ L2 norm
@ Scales all coefficients based on their value for prediction

@ Can perform regression even when colinearity exists

y 2
minZN . (yi — Bo — x' B) }s.t.)\ZJ'-’:1|6j2\ <t (32)
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Linear Regression
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Elastic Net

o Elastic Net uses penalties on both the L; and Ly norm

@ Compromise between Lasso and Ridge
. 2
minZLy(yi — Bo — X! B) st hllBI? <t MG < 22 (33)
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Linear Regression
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Visualization

Elastic net-Diagrammatic Representation

B

B2

‘!“? WallStreetMojo

Data Science and Machine Learning Golden, Maliar

30/30



Optimization Conclusion
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Thank You So Much! )
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