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Motivation

Offshore wind has grown tremendously and has incredible growth potential
One of the biggest costs of offshore wind is transmission systems
Recent work suggests HVDC systems may improve economics of offshore wind
Joint technical and economic analysis needed to understand feasibility of OWF transmission systems

Figure 1. Total capacity (MW) of OWF by country by year according to DOE.

Introduction

Reviews existing research, innovations, and methodologies in HVDC offshore wind farms (OWFs)
focusing on economic analysis, connection topology, converter design, and technical modeling.
Economic Analysis:

Summarizes literature on costs, reliability, and discounting.
Highlights integration of economic and technical perspectives.
Identifies gaps to refine techno-economic analysis.

Connection Architectures:
Evaluates AC, DC, and emerging configurations.
Explores implications for reliability, control, scalability, and cost.

Converter Designs:
Analyzes various converter types (VSCs, LCCs, DC-DC converters).
Assesses efficiency, reliability, and adaptability for offshore use.

Technical Modeling:
Reviews simulation and modeling techniques.
Focuses on optimizing performance and computational efficiency.
Supports decision-making by predicting operational behaviors and system reliability.

Component Cost

System Transmission System
Component HVDC HVAC
Substation 24-45 10-45
Cable .6/KM 1.5/KM
Offshore Platform 73.5 24
Onshore Platform 24 24
Cable Installation 215 215
Line Losses % per 1000 KM .035 .067

Breakeven between HVDC and HVAC

Figure 2. Breakeven in fixed cost overstates breakeven point. Figure 3. HVDC has better economics with size.

OffshoreWind Farm Connection Topology

Figure 4. Offshore Wind Farm Topology.

Figure 5. Connection topology diagram.

Technical Challenges for OffshoreWind
Main Challenge Mitigation Strategy References

Harmonic Distortion −Use of active/passive filters;
−Advanced Control Algorithms. [1, 2, 3]

Voltage Unbalance −Dynamic voltage balancing techniques [4]
Power Quality

Voltage Sag, Swell, Flickers
−Use of FACTS devices
− Dynamic VAR compensators
− Power conditioning systems.

[5, 6]

Stability
Voltage Stability

−Reactive power compensation
−Advanced Control Techniques
−Wind turbine converters with reactive power control capabilities.

[7]

Frequency Stability
−De-loading by Variable Speed Wind Turbine
−Capacitor energy storage in VSC-HVDC
−Coordinated frequency regulation between OWF and VSC-HVDC

[8]

Fault Ride-Through Capability
(LVRT/HVRT) −Implement LVRT and HVRT schemes in wind turbines and HVDC converters [9]

Fault Diagnosis and Protection Offshore Converter Protection −Use of advanced protection systems and fault detection technologies [10, 11, 12, 13]

Short-Circuit Current Limitation −Use of superconducting fault current limiters (SFCLs)
−Adaptive relays for precise fault detection and response [14, 15, 16]

Inertia System Inertia Reduction
−Use of synthetic inertia from wind turbine control
−ESS-based inertia emulation
−Virtual synchronous machines to mimic conventional inertia

[17, 18, 19]

Ancillary Services Provision
Provision of Frequency Regulation

−Battery Energy Storage Systems (BESS)
−Synthetic inertia for fast frequency response
−Advanced control algorithms

[20, 21, 22]

Provision of Voltage Control and Reactive Power Support −Use of FACTS devices (STATCOM, SVC)
−Wind turbine converters with reactive power support [23, 24, 25, 26]

Provision of Reserve Power −Novel large-scale ESS
−Coordinated operation with other RES [27, 28, 29, 30, 31]

Black Start Capability
−Implement black start capability in ESS
−Specific wind turbines designed for black start operations
−Coordinated black-start strategy

[32, 33, 34, 35]

Sizing of Converters and Efficiency Converter Weight and Volume
−Use of modular multilevel converters (MMC)
−Advanced materials to reduce size and weight
−Novel collection systems

[36, 37, 38, 39, 40]

Converter Losses −Use of high-efficiency semiconductor technologies (e.g., SiC or GaN)
−Advanced converter topologies for lower losses [41, 42]

Grid Code Compliance Compliance with Grid Codes −Adaptive control schemes to meet diverse grid code requirements
−Ensuring LVRT/HVRT capabilities [43, 44]

Economic Challenges to OffshoreWind Industry
Main Challenge Mitigation Strategy References

Capital Intensive
− Subsidies for wind energy development
− Renewable Portfolio Standards
− Feed-in tariffs

[45, 46]

Long-term Financing Cost and Revenue Uncertainty

− Contracts for Differences
− Long-term electricity price modeling
− Power purchase agreements
− Inflation Adjustments

[47, 48, 49]

Low Revenues for Baseload Generators − Capacity market redesign
− Convex hull pricing [50, 51, 52]

Increased Ramping by Dispatchable Resources − Improved cold start efficiency
− Diversified portfolios (fossil and renewable) [53, 54, 55]

Missing Money Problem
Price Variability

− Demand response
− Energy storage systems (ESS)
− Long-distance transmission

[56, 57, 58]

Waste of Wind Turbines − Turbine recycling
− Reduced metal intensity [59, 60]

Sustainable Supply Chain Securing Metals for Turbine Production − Development of mineral sources
− Supply chain transparency [61, 62]

Intermittency Non-dispatchability
− Coordination with ESS
− Black-start natural gas cooperation
− Capacity market redesign

[30, 56, 63]

Initial Investments
− Public-private partnerships
− Loans via DOE programs
− Government contracts (e.g., Executive Order 14057)

[64, 65, 66]

Concept to Industry Workforce Development − Education funding
− Project pipelines to retain knowledge [67, 68, 69]

Political Support Uncertain Technology Funding − Long-term funding guarantees
− Resilience to leadership changes [70, 69]

Converter Designs

Figure 6. Power electronic converters. Figure 7. DC/DC Converters.

Conclusions and Next Steps

Grid Architecture:
Conclusions: New architectures like MTDC and Mesh have strong potentially for fault-tolerance
Next Steps: Focus on scalability and reliability and onshore integration through improved load management.

Converter Technologies:
Conclusions: Substations major cost of HVDC, DC-to-DC converters could potentially eliminate the offshore
substation
Next Steps: Emerging technologies like medium-frequency systems, HVDC with transformer integration, and series
DC grids. Investigate solid-state transformers and DC-DC converters for better cost, reliability, and performance.

Modeling and Computational Advances:
Conclusions: Need for improved impedance modeling, joint techno-economic operations modeling
Next Steps: Improve modeling techniques by enhancing dynamics, accuracy, and co-simulation capabilities. Develop
computational innovations for efficient simulation and system operation.

Economic and Market Integration:
Conclusions: Economics get better with system size and line length, need economic analysis of reliability
Next Steps: Techno-economic sensitivity analysis and equilibrium models of OWF. Stochastic optimal control for
economic and technical variables.
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