Transformers but not the Kind You're Thinking of: Commodity Market Forecasting using Natural Language Processing

¹Stony Brook Economics

Motivation

- forecasts of movements of energy
- text-based reasons for forecasts
- reason model
- techniques

Commodity Area	Commodities	Reports	Tokons	Farliest D
Commoulty Area	commodifies	Reports	IUKCIIS	
Agriculture	20	2021	19.4 M	1999
Metals	27	853	12.2 M	1997
Energy	13	615	12.3 M	1997

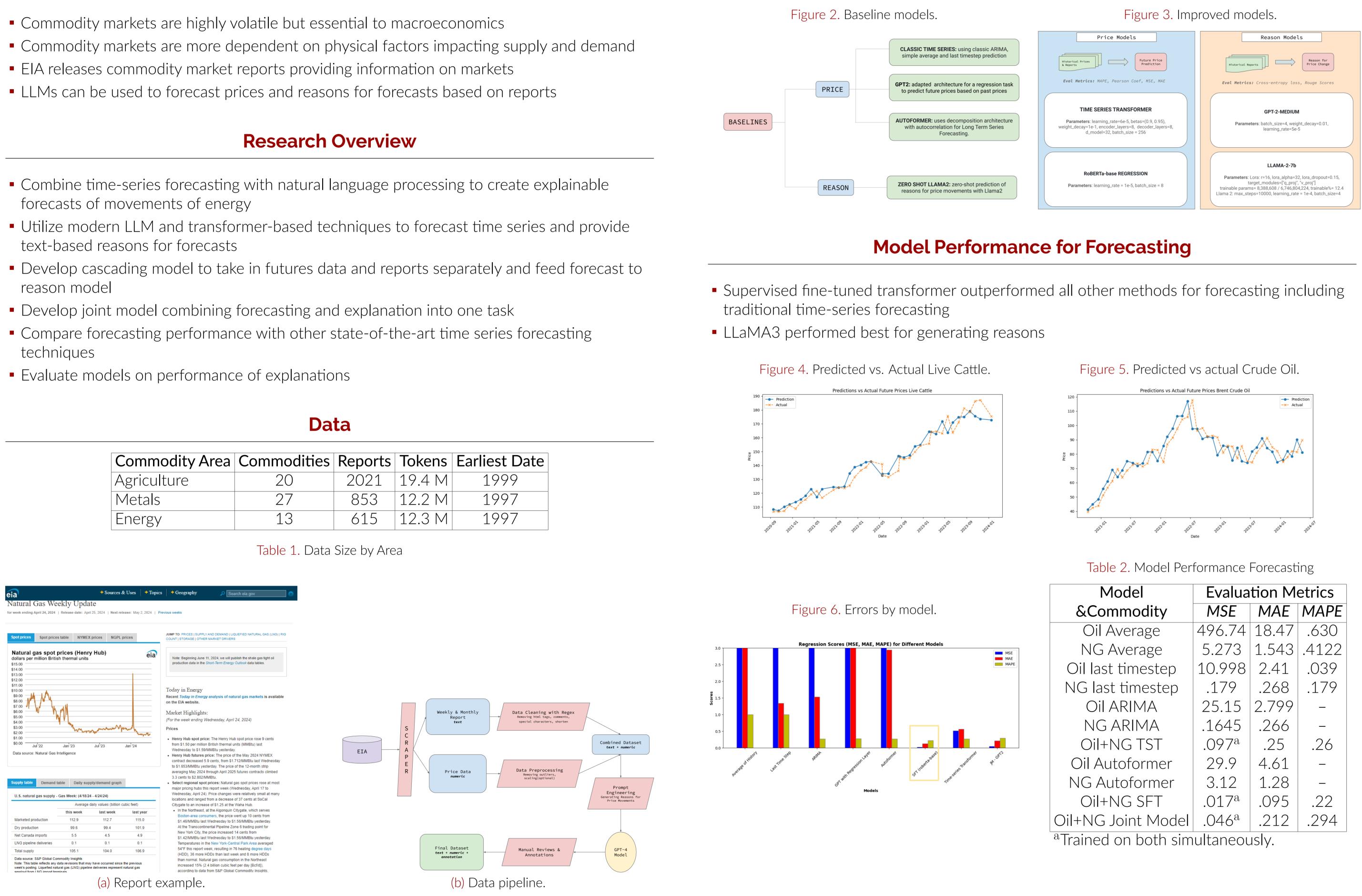


Figure 1. Data processing and example.

Dana Golden¹³

²Stony Brook Computer Science ³This material is based upon work supported by the National Science Foundation under Award No. 2125295 (NRT-HDR: Detecting and Addressing Bias in Data, Humans, and Institutions). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Models and Methodology

Dikshya Mohanty² Khushboo Singh²

Model	Evaluation Metrics				
Commodity	MSE	MAE	MAPE		
)il Average	496.74	18.47	.630		
G Average	5.273	1.543	.4122		
last timestep	10.998	2.41	.039		
last timestep	.179	.268	.179		
Dil ARIMA	25.15	2.799	_		
IG ARIMA	.1645	.266	_		
il+NG TST	.097 ^a	.25	.26		
Autoformer	29.9	4.61	_		
Autoformer	3.12	1.28	_		
il+NG SFT	.017 ^a	.095	.22		
IG Joint Model	.046 ^a	.212	.294		

Results: Reason Model

- Good Reason: Cascading TST+LLaMA3: "Today's natural gas price increased from last week due to volatile spot prices in the western United States driven by demand fluctuations in California and the Pacific Northwest, with SoCal Citygate and PG&E City"
- Bad Reason: Cascading TST+LLaMA3: "Today's price decreased from last week's price due to a decrease in U.S. crude oil imports and refinery inputs, leading to lower supply and higher demand, respectively."

Conclusions and Next Steps

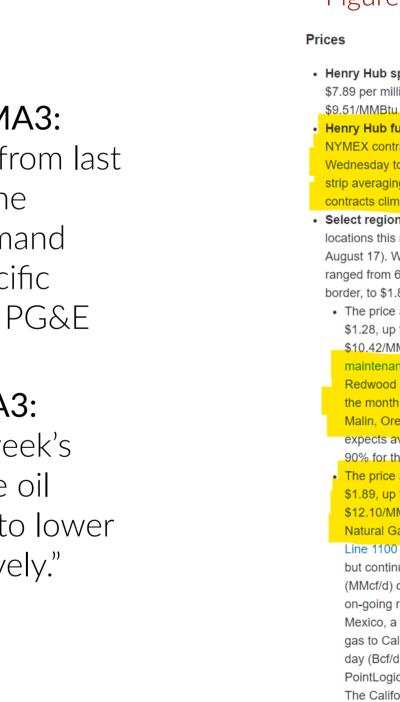

- forecasting method for futures market
- into model of reasons
- Extensions and Next Steps:
- Implement multi-task, multi-objective learning with time series and text features
- Create fusion layer with time series and text features
- Implementing cross-modality by adding cross-attention layers across both modals
- Incorporating real-time news data
- Adding Metals and agricultural data, adding other outlook programs
- Apply techniques to counterfactual analysis

Table 3. Model performance reason model.

Model	Evaluation Metrics			
&Commodity	Rouge1	RougeL	Lsum	
LLaMA3 Zero-shot Oil	.268	.088	.201	
LLaMA3 Zero-shot NG	.326	.244	.247	
LLaMA3 Zero-shot STEO	.349	.214	.242	
LLaMA3 PEFT	.57	.5	.5	
TST+LLaMA3 FineTuned	.59	.519	.52	
SFT+LLaMA3	.62	.53	.53	
GPT2 Joint	.57	.45	.44	
TST+GPT2-M FineTuned	.58	.50	.50	
SFT+GPT2-M	.58	.49	.5	

Reason Example

Figure 8. EIA Report. **GREPORT LINK** Henry Hub spot price: The Henry Hub spot price rose \$1.62 from \$7.89 per million British thermal units (MMBtu) last Wednesday to \$9.51/MMBtu yesterday Henry Hub futures prices: The price of the September 202 VYMEX contract increased \$1.042, from \$8.202/MMBtu la ednesday to \$9.244/MMBtu yesterday. The price of the 12-Select regional spot prices: Natural gas spot prices rose at most locations this report week (Wednesday, August 10, to Wednesda August 17). Week-over-week increases at major pricing hubs ranged from 63 cents at Malin, located on the California-Oregon border, to \$1.89 at SoCal Citygate in Southern California. The price at PG&E Citygate in Northern California rose \$1.28, up from \$9.14/MMBtu last Wednesday to \$10.42/MMBtu yesterday. In northern California, PG& maintenance schedule includes ongoing work on the Redwood pipeline and Buckeye station through the end the month. The Redwood pipeline delivers natural gas fro Malin, Oregon, to the San Francisco Citygate. PG&E expects available pipeline capacity to be between 70% and 90% for the next few weeks. he price at SoCal Citygate in Southern California ros \$1.89, up from \$10.21/MMBtu last Wednesday to 12.10/MMBtu yesterday. In the Southwest, El Paso Natural Gas Company rescheduled pipeline remediation Line 1100 from Wenden, Arizona, to Ehrenberg, Arizona out continues to report that 450 million cubic feet per day MMcf/d) of natural gas is currently unavailable due to the on-going repair of Line 2000. In the Permian Basin of New Mexico, a major region of production that supplies natural gas to California, production fell 0.3 billion cubic feet per day (Bcf/d) week over week, or 6%, according to data from PointLogic. Temperatures across California remain high The California ISO issued a Flex Alert on Tuesday urging

• Combined economic and natural language processing insights to create explainable

• Combined time-series transformer and LLaMA3 to create cascading model, feeding forecasts

• Used GPT-2 to create joint model, jointly predicting price movements and reasons